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SUBSONIC KERNEL-FUNCTION FLUTTER ANALYSIS OF A

i

HIGHLY TAPERED TAIL SURFACE AND COMPARISON

WITH EXPERIMENTAL RESULTS

By Gerald Dj Walberg

SUMMARY

A flutter analysis employing the kernel function for three-

dimensional, subsonic, compressible flow is applied to a flutter-tested

tail surface which has an aspect ratio of 3.5, a taper ratio of 0.15,

and a leading-edge sweep of 30 °. Theoretical and experimental results

are compared at Mach numbers from 0.75 to 0.98. Good agreement between

theoretical and experimental flutter dynamic pressures and frequencies

is achieved at Mach numbers to 0.92. At Mach numbers from 0.92 to 0.98,

however, a second solution to the flutter determinant results in a

spurious theoretical flutter boundary which is at a much lower dynamic

pressure and at a much higher frequency than the experimental boundary.

IIffRODUCTION

b

In order to predict successfully the flutter characteristics of a

low-aspect-ratio, plate-like lifting surface, a flutter analysis must

employ accurate, three-dimensional, aerodynamic forces. Because of the

prominent role of flutter in modern airplane design, the development of

practical procedures for calculating three-dimensional, unsteady, aero-

dynamic forces is a problem of increasing importance.

A promising approach to this problem involves direct consideration

of the integral equation relating the lift and downwash distributions

of oscillating finite wings. Basic to the solution of this equation is

the evaluation of its kernel, a function which is essentially an aero-

dynamic influence coefficient representing the downwash at some point

on a lifting surface due to a unit aerodynamic load at any other point

on the surface. In reference i, the kernel function for oscillating

finite wings in compressible subsonic flow was reduced to a form which

could be conveniently evaluated. By using this form of the kernel, a

subsonic lifting-surface method for calculating the forces on a har-

monically oscillating wing of arbitrary plan form and deflection mode



was developed in reference 2. This method employeda systematic numeri-
cal solution of the integral equation and was suitable for programing
in high-speed computing machines.

In reference 3, the lifting-surface°method of reference 2 was
employed in a modal-type flutter analysis. This flutter analysis appears
to be well suited to the study of thin low-aspect-ratio surfaces at sub-
sonic speeds, since it is capable of accounting for the effects of com-
pressibility, finite span, and chordwise deformation. Few comparisons
between flutter boundaries, calculated by this analysis_ and experimental
flutter boundaries are presently available. The purpose of the present
paper is to present such a comparison.

In the present investigation a tail surface having an aspect ratio
of 3.5 and a taper ratio of O.15 was flutter tested at Machnumbers
from 0.75 to 1.06. This model had a leading-edge sweepof 30° and a
3.5-percent-thick biconvex section. The natural vibration modesof the
model involved significant chordwise deformation. Theoretical flutter
boundaries were calculated, for Machnumbersfrom 0 to 0.98, by using
the analysis of reference 3 (with minor modifications). In the analysis,
the flutter modewas approximated by a linear combination of the first
three experimentally measurednatural vibration modesof the model.
Theoretical and experimental flutter boundaries are comparedherein.

SYMBOLS
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A

Ap

aspect ratio

panel aspect ratio

Aij generalized aerodynamic force 1 JfhiLj dS
bo_

S

bo

bt

f

fi

g

streamwise root semiehord, ft

streamwise tip semichord, ft

frequency of vibration, cps

frequency of the ith natural vibration mode, cps

structural damping coefficient
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z

h(x,y,t)

h i

I

i,J

kO

Z

Lj

M

Mi

m(x,y)

q

Qi

qi

R

S

t

V

x,y,z

0

instantaneous deflection of point on tail surface in flutter

mode, ft

displacement of point x,y in the ith mode of vibration normal-

ized with respect to the maximum displacement in that mode

 i(x,y)

imaginary part of complex unkno,,_n 2

indices denoting a particular natural vibration mode

reduced frequency, bo_/V

exposed semispan, ft

dimensionless series expression for aerodynamic load distri-

bution due to motion in jth vibration mode

Mach number

generalized mass associated with ith mode of vibration

/m(x_y)hi2dS , slugs

S

local mass per unit area at point x,y, slugs/sq ft

dynamic pressure_ lb/sq ft

generalized force associated with ith mode of vibration, lb

generalized coordinate in ith mode of vibration, qie i_t, ft

complex amplitude of generalized coordinate in ith mode, ft

real part of complex u_known

surface area of tail, sq ft

time, sec

velocity of airstream, ft/sec

cartesian coordinates (see fig. 4)

angular chordwise variable (see fig. 5)



ALE

h

6O

leading-edge sweep angle, deg

taper ratio

panel taper ratio

panel mass ratio, ratio of exposed panel mass to mass of a

truncated cone of air having lower base diameter 2bo,

upper base diameter 2bt, and height Z

generalized mass in ith mode of vibration referred to a den-

sity parameter, 4_p_2bo (see eq. (ii))

density of airstream, slugs/cu ft

flutter determinant, (_)2(i + ig)complex unknown of

angular frequency, 2_f, radians/sec

angular frequency of ith vibration mode, 2_fi, radians/sec

Dots over symbol indicate derivatives with respect to time.
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EXPERIMENTAL INVESTIGATION

Model Geometry and Construction

The experimental data, presented herein, were obtained from one of

a series of all-movable, horizontal stabilizers which were flutter tested

in the Langley 8-foot transonic pressure tunnel. The model used for the

present investigation had an aspect ratio of 3.5, a taper ratio of 0.15,

a leading-edge sweep of 30 ° , and a 3.5-percent-thick biconvex section.

Structural and geometric details of the model are shown in table I and

in figure i.

As shown in figure i, the model was built up of O.OlO-inch-thiek
duralumin laminations. These laminations were covered with balsa which

was shaped tothe desired external contour. The outer surface of the

model was covered with a thin plastic film. Incorporated in the model

center section were two ball-bearing trunnions which located the hinge

line at 40 percent of the mean aerodynamic chord. For the present

investigation, however, the actuator rib (see fig. i) was clamped to
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prevent its rotation about the hinge line. This clamping of the center

section served to increase the amount of chordwise deformation involved

in the natural vibration modes of the model.
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Physical Properties of Model

The natural frequencies of vibration were determined by exciting

the model with two electromagnetic shakers located fore and aft near

the root chord. During these vibration tests, the model was mounted
in the wind tunnel exactly as it would be mounted for the flutter tests

which were to follow. Time-exposure photographs were employed to deter-

mine the natural vibration modes of the model. These photographs were

taken with a camera which was mounted outboard of the model tip and

directed spanwise toward the root. The upper surface of one panel of

the model was painted flat black and had thin, white, chordwise lines

located at every one-tenth of the exposed semispan. With the model

moving in one of its natural modes, a time-exposure photograph was

taken. In the photograph, the chordwise white lines appeared as bands,

the thickness of these bands being indicative of the amplitude of

motion. The first three natural modes and their frequencies are pre-
sented in figure 3.

Instrumentation

The model was instrumented with electrical strain gages. Two

groups of gages were used on each panel of the model. The first group,

which consisted of bending and torsion gages bonded to both the upper

and lower panel surface, was located near the _O-percent-chord line and

the panel root. The second group consisted of torsion gages bonded to

the upper panel surface and was located near the 50-percent-chord line

at 70 percent of the exposed semispan. During the tests, a recording

oscillograph was used to record the signals from the various gages.

These records were used to determine flutter frequencies and the onset

of flutter. The strain-gage signals were also fed into a cathode-ray

oscilloscope in such a way that a Lissajous pattern indicated the start

of flutter. At each test point, the tunnel Mach number, stagnation

temperature, and stagnation pressure were recorded by a punchcard
readout system.

Tunnel and Support System

The tests were conducted in the Langley 8-foot transonic pressure

tunnel which is a single-return tunnel having a rectangular, slotted
throat. In this tunnel, stagnation pressure and Mach number are
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independently variable. Some details of the tunnel test section have

been presented in reference 4.

The model was mounted at an angle of attack of 0° on a long,

5.5-inch-diameter cylindrical fuselage which extended into the subsonic

region upstream of the test section. The fuselage was considered a

rigid mount, since the fuselage mass was many times greater than the

model mass. The measured fundamental vibration frequency of the support

system was 4.3 cycles per second.

Flutter Tests

Experimental zero-lift flutter points were obtained at Mach numbers

from 0.75 to 1.06. The procedure used in obtaining flutter at a given

Mach number was to increase stagnation pressure gradually until flutter

was obtained. After flutter was obtained, tunnel conditions were held

constant momentarily and then Mach number and stagnation pressure were

reduced as rapidly as possible in an effort to save the model from

destruction. All flutter points reported herein were obtained from

the same model. Experimental results are presented in table II.
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ANALYTICAL INVESTIGATION

This section presents the method of flutter analysis used in the

present investigation. Because of the similarity between the present

analysis and that of reference 3, the method is described only in gen-
eral terms.

In the present analysis, the fuselage side was assumed to act as

a reflection plane. Hence, the plan form which was analyzed is that

plan form which results if, in figure i, the center section is removed

and the panels are Joined along their respective root chords. This

resultant plan f0rmand the coordinate system used in the analysis are

presented in figure 4.

Equations of Motion

In the present analysis, the flutter mode is approximated by a

linear combination of the model's first three natural (orthogonal)

vibration modes; that is,

h(x,y,t) = ql(t)hl(X,y) + q2(t)h2(x,y) + q3(t)h3(x,y)

v

(1)

!i
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where qi(t) = _i ei_t is the generalized coordinate for the ith degree

of freedom and hi(x,y) is the associated normalized natural mode shape.

If the Lagrangian formulation is applied and the procedure of ref-

erence 3 is followed, the resulting equation of motion for the ith

degree of freedom is of the form

Mini + cui2Miqi = Qi (2)

where M i and Qi are, respectively, the generalized mass and the

generalized aerodynamic force for the ith degree of freedom. If the

definition qi = qi ei_t is employed, equation (2) may be written in

the form

(3)

which corresponds to equation (6) of reference 3.

Generalized Mass

The generalized mass for the ith degree of freedom is defined as

M i = fJm(x,y)hi2dS

S

(4)

where m(x,y) is the distribution of wing mass per unit area, and h i

is the ith normalized, natural mode shape. In the present investiga-

tion, both m(x,y) and h i were determined experimentally, as

described in the section entitled "Physical Properties of Model." In

order to evaluate Mi, the wing was divided into 27 mass elements, and

the displacement of the center of mass of each element hi _k) was

taken from the appropriate mode shape. The generalized mass for the

ith mode was then computed as

27

Mi = _, m( k) [hi (k)_ 2

k=l

where m(k) is the mass of the kth element.
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Generalized Aerodynamic Force

As shown in reference 5, the generalized aerodynamic force may be

expressed as

(6)

In equation (6), Lj is a series expression for the aerodynamic load

distribution due to motion in the jth natural mode. Basically_ two

steps are required in the calculation of Qi" The first step is the

determination of Lj and the second step is the evaluation of the

surface integrals F£hiLj dS. Reference 2 describes a collocation

S

procedure which is used to determine Lj. This procedure consists of

representing the aerodyD_mie surface loading by a series expression that

automatically satisfies the conditions of load at the wing edges. The

downwash angles at various control points on the surface are then used

as boundary conditions to determine the values of the arbitrary coeffi-

cients in the assumed series. The locations of the control points used

in the present investigation are show_ in figure 5. After Lj is deter-

mined, the evaluation of Qi is simply a matter of performing the surface

// hiL j dS. In the present investigation, this inte-integrations

s

gration was performed numerically by using an ll-polnt Simpson's Rule

in the spanwise direction and a 9-point Simpson's Rule in the chordwise

direction. The numerical integration lattice is shown in figure 5.

L

Flutter Determinant

By substituting equation (6) into equation (3), the ith equation

of motion may be written in the form

i =0

(7)
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or alternatively,

- qi + _--_-(qlAil + q2Ai2 + q3Ai3) = 0
kO _i

(8)
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where

1 77hiLj dSAij = bo Z

S

(9)

bo_ (lO)ko=- V-

A_ = 4_PZ_bo (ll)
_i Mi

If equation (8) is written for the three degrees of freedom (nat-

ural modes) under consideration, a set of three simultaneous homogeneous

equations results. If these equations are to have a nontrivial solution,
their coefficient determinant must vanish.

Hence,

2

i- (_-----)g+ All AI2 AI3koe_l koe_1 kOe_l

2

A21 i _ (_--) _ + A22 A23
k02#2 kO2p2 k02#2

A31 A32 1- (_..-_2D,+ A3-.-------_3

_2_- 3 k02_3 \_7 _2_ 3

=0 (12)

where the complex eigenvalue _ is defined by

a = (l + ±g) (13)
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In this definition of _, _ is the unknown frequency and g is a

damping coefficient that becomes zero at the borderline condition

between damped and undamped motiom.

Determination of Theoretical Flutter Boundaries

In the present investigation, theoretical flutter characteristics

were determined for Mach numbers M from 0 to 0.98 and mass ratios

from 20 to i00 by the following procedure.

For each combination of M and _, the flutter determinant was

solved for a range of reduced frequencies kO. Since expansion of the

flutter determinant results in a cubic equation in the complex unknown

_, each combination of M, _, and kO yields three values of _ which

must be examined to see whether they meet the requirements for a flutter

point. By definition,

2

_ = (_---)(i + ig) : R + il

therefore,

___ = i and g I

At each M, flutter characteristics were determined from plots of g

and _/_2 against i/k O in which _ was a parameter. Flutter points

were taken as being those points where g = 0 and > O. As illus-

trations, curves of g and w/a_2 against i/k 0 are presented in fig-

ures 6 and 7, respectively. The resulting flutter characteristics were

plotted as flutter boundaries of dynamic pressure q required for

flutter and flutter frequency ratio _/_2 as functions of M with

as a parameter. Theoretical flutter boundaries corresponding to wind-

tunnel conditions were calculated for comparison with the experimental

flutter points.
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DISCUSSION 0FRESULTS

The g against 1/k 0 and _/_2 against i/k 0 curves of fig-

ures 6 and 7, respectively_ are presented to illustrate the behavior

of the flutter determinant roots at various Mach numbers. In the

ii
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present investigation, the behavior of these roots was found to be simi-

lar throughout the Mach number range 0 < M =< 0.90. Therefore, curves

are presented only for M = O, 0.75, and 0.90. These curves show that,

for the range 0 < M < 0.90, the only critical root is that one asso-

ciated with the second natural mode. It should be noted, however, that,

as the Mach number approaches 0.90, the third-mode root approaches the

g = 0 line.

At a Mach number of 0.92 the character of the determinant roots

has changed. At this Mach number, the first- and third-mode roots are

both critical. The first-mode root predicts flutter for the mass-ratio

range from 20 to i00 and the third-mode root predicts flutter for mass
ratios 60 to i00. From figure 6(d) it is seen that the third-mode root

loops up over the g = 0 line and then continues on the negative side.

Hence, the third-mode root indicates flutter over a limited range of

i/k 0 and _, whereas the first-mode root indicates flutter for all

i/k 0 greater than that value for which g 0 and for 20 < <
= = _ = i00.

At Mach numbers of 0.94, 0.96, and 0.98, the first- and third-mode

roots remain critical. The principal effect of an increase in M from

0.92 to 0.98 is that the flutter region predicted by the third-mode

root grows until, at M = 0.98, only a lower limit on i/k 0 is indi-

cated within the reduced-frequency range investigated.

Figure 8 presents theoretical flutter boundaries of dynamic pres-

sure q required for flutter and flutter frequency ratio _/_2 as

functions of Mach number with mass ratio as a parameter. Figure 8 shows

that the flutter points taken from the first and second-mode roots of

the flutter determinant form smooth boundaries. These boundaries, which

are shown as solid lines in figure 8, are determined by second-mode-root

flutter points at 0 _ M _ 0.90 and by first-mode-root flutter points

at 0.90 < M $ 0.98. As mentioned previously, the third-mode roots of

the flutter determinant also yield flutter points at Mach numbers from

0.92 to 0.98. The flutter boundaries due to these points are shown, in

figure 8, as dashed lines. In figures 6 and 7 it was seen that the
thlrd-mode roots of the flutter determinant indicated flutter over

limited ranges of reduced frequency and mass ratio at Mach numbers

from 0.92 to 0.96. Hence, at these Mach numbers an upper and lower

boundary of q and _/a_2 would exist for each _. In figure 8, only

the lower boundaries are shown. The curves of figure 8 show that,

throughout the range of variables investigated, flutter q for a given

M varies with _ (and hence with density). Therefore, these theoreti-

cal results do not agree with the so-called constant-q concept of

flutter. However, the veriation of q with _ becomes small at

• high _. The effect of _ on the variation of q with M is also

of interest. Consider the first- and second-mode-root curves. For a

of 20, q decreases slowly as M goes from 0 to 0.90 and then increases
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abruptly for M_ 0.90. For _ = 40, the decrease in q with increasing
M is greater than for p = 20, and the minimumvalue of q is reached
at M = 0.925. In general, figure 8 showsthat, as p increases, the
decrease in q with increasing M becomesmore pronounced, and the
minimumvalue of q occurs at a higher M. These trends bear a remark-
able similarity to the trends of experimental data presented in figure 21
of reference 5.

In figure 9, the theoretical and experimental results of the present
investigation are compared. The theoretical curves of figure 9 were
obtained from calculations employing the experimental value of _ for
each M. Figure 9 shows that, for M from 0.75 to 0.92, the agreement
between theory and experiment is good for both q and _/_2" For M
from 0.92 to 0.98, however, two theoretical flutter boundaries exist.
In flutter prediction by theoretical means, the flutter solution which
yields the lowest q must be accepted at each Machnumber. Hence, on
this basis, the third-mode-root boundary, which predicts a flutter fre-
quency very near the frequency of the third natural vibration mode,
must be accepted for 0.92 _ M _ 0.98. For this boundary the agreement
of both q and mIo_2 with experimental results is poor. If, however,
the third-mode root were disregarded, the agreement between theory and
experiment, especially with regard to trends, would be acceptable for
the entire M range for which calculations were made. There is, how-
ever, no reasonable basis for disregarding the third-mode-root flutter.
The operating path of the wind tunnel was such that, if this flutter
had existed physically, it would have been encountered during the
experimental investigation.

In an attempt to determine the origin of the third-mode-root flutter,
somecalculations were undertaken for M = 0.94 in which various two-
degree-of-freedom subcases of the flutter determinant were examined.
Whenthe first two natural vibration modeswere considered, only the
flutter solution which gave acceptable agreement with experiment was
obtained. The third-mode-root flutter was found only when a combination
of the second and third natural modeswas used. It is noted that the
frequencies of these modesare very close together; this in itself might
be expected to lead to conditions of resonance. Since no such flutter
as that indicated by the third-mode root was found experimentally, it
maybe concluded that this flutter modeis sensitive to somefactor not
properly accounted for in the analysis. A complete understanding of
the nature of this additional flutter solution would require a broad
survey of the many factors which might possibly influence it. Such a
survey would include considerations of various control point locations
and numerical integration techniques, of higher structural modes, and
of structural damping.
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A flutter analysis employing the kernel function for three-

dimensional, compressible flow was applied to a flutter-tested tail

surface which had an aspect ratio of 5.5, a taper ratio of 0.15, and

a leading-edge sweep of 50 °. The flutter tests covered the Mach number

range from 0.75 to 1.06. Theoretical flutter boundaries were calculated

for Mach numbers from 0 to 0.98. In the calculations, the flutter mode

was approximated by a linear combination of the first three natural
vibration modes of the model.

Good agreement between theoretical and experimental flutter dynamic

pressures and frequencies was achieved for Mach numbers up to 0.92. At

Mach numbers from 0.92 to 0.98, a second solution to the flutter deter-

minant resulted in spurious theoretical flutter points which were at a

much lower dynamic pressure and a much higher frequency than the experi-

mental points.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., February ii, 1960.
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TABLEI

PROPERTIESOFMODEL

Aspect ratio, A ....................... 3.5
Thickness ratio ....................... 0.035
Taper ratio, h ...................... 0.15
Leading-edge sweepangle, ALE, deg ............. 30
Streamwise airfoil section ................. Biconvex
Streamwise root semichord, bo, ft .............. 0.625
Exposed semispan, Z, ft ................... 1.22
Exposedpanel mass, ib-sec2/ft ............... 0.055
Panel aspect ratio, Ap ................... 1.66
Panel taper ratio, hp .................... 0.176
Natural frequencies, cps:

First mode ....................... 40
Secondmode ........................ 108
Third mode ........................ 117

L
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TABLEII

EXPERIMENTALFLUTTERPOINTS

Point M

i 0.750
2 .848
3 .912
4 .958
5 .983
6 i. 060

V,

ft/sec

841.7

938.5

!, 001.3

i, 044. i

1,067.0

1,135.7

P_

Ib-sec2/ft 4

0.002146

.OO15O9

.001197

.001114

.001232

.001114

q,

ib/sq ft

760

664

6OO

607

701

718

f, _,

cps rad/sec

64.1 402

57.4 360

51.9 325

_4.9 344

56. 
56.1 352

O.592 44.5

•531 63.O

.479 79.5

.507 85.4

.522 77.2

.519 85.4

ii]!if
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Figure 5.- Control points and numerical integcation points.



22

i 1' i
-- 6 --°o_--_:;

-'\ " X_

I

" i .....

\

..... X

!'o_i j_:o

t._ r. )1..-

I 1 r

I

//
./
,/

-,4

/

/¢

//

/
t

I

I

F

i

o c'J
I

o I
# i

A

X

J
!

/

t

o , -- -_ 5-o 8 i _,o
.... ;7 I / -'_

zl J____

.-t -I_- o-- _

...... /o--O, i

/ __ o

/

i o
m _." o '1
I I "T ]-

i
8

0
4o

0
o,I

0

r_

tQ

0

r_

0

_) o

Ul r/l

v _-o

_._ o

0
e,-4

o

.r-t

t_O

°r4

I

M)

©

-r-I

!

Crx
i.-1

!

:lili1
-- it

il



23

Ipx

!

i

i

L_

_o
11

I_L

r-

i

i

i
0,I

i/ 'l -d - - _'.
: I i

i

I .......

I I ,o
_ 0o o c!.

I f r -i T

-12

d,
b---

d
II

d

.r.4

I::I
0

I

¢,1

t
bO



2k

-i _

d

Ii

v

,,r-I

4o

0
r_

I

,.S

I

o%

IiIili



4W

25

r4

!

\

L --_\

6

L _ o I__L_L_JJ_I

ooo tt\_ \ \ " 1

X \ _ So
0 ---

" I

\ .\ ,,
\

\_ :,:!4r/

_!iii
m

_J • q

j.

Lj

-!
_.. el, o _ _" co w q

_" t" i" i" T --

c_
I1

_d

.p

o

!



26

E_E

l.k _'ll---

I -

:!l-
,VITI

I

....... --==_

ill II I
........ t ..... /

n

| ......

5 .... _Ji
co _ _t ¢_ 0 oJ

I"

d
_3

-r-I

d o_
o

II
I

:_ ,,d

_>
i::,O

.¢-1

I



27

Lr_
,--I

I

c_ q a0 _ ,_. c_ 0

• g

o

o

c_

rL_ _,,-_-
o

c_ _. _ a0 q c_

1 I I I" -_ T

c_
II

g_
v

0

I



28

,do

,_ _ I ° SI'

\ i

b- \ \

0 -_ _-. , --
..... _ _ t4 "_ "_" _

..... \ k_\,_ ,_ t

t0 "-- "----- ......
tl

.... ---

__ E_ E .....

-[-T .....
-- ,..2

-- _ _iH- ltl- 11_,

V44_k4- ;_

.... LL_.......1
_M_J '

-_J7

/1
/.

,/
/

/

/

14-I t x-

._o r

J

..... S

.... i__

...-.-,

_d

k - -- _I1 U I III / L

- t'tt1_It / ! .....

I- -_.... dlYl/ ........

I
u_ ,e (5

m.

I' t I' t'
o

I

-12

d

d
It

d
©

H

0
r..)

I

kid

.rJ I_



29

I
!l

0_
OJ

-- -',3-

:I

I.L(. _1-

i

I'i

i---° _ 8]
%

\,

\

__. \ ..... ]
\ I

..... L

Jill

\

•!f

/

........ _4 ....
X

........ X

!
I

!

_m

L1

tt -

I II

\t--

%1

\

I

o

-i _

d
II

t/]

©

,.el

8
r--i

o

o
o,1

o

+_

o

©

,-t

,-I

o
.i-i

c_

c)

©

o_

I

d

d
0
4._

0



5o

""-4

i i
i

__ L
L

_ L
D_

m _4

I
-- 2

_J

m

-I
-I

C_

\-
_I-_ \,

%

r

r

(M _ -- -- -- --

\ \ . - ...... !

-----'I /__i_";...... ::Looooo'_o_oQ

)( _8/i t

i'i
L/_ _.:._,

ed

_D

+ ....

_ - _2"

il 1t- '

!_

J
o

4

o_
L.)

II
I

v

*,-I

I

C_



31

k.O
!

c_

v

+_

0
r._)

!

°,-I

oJ

o



32

-..!

'8

-___:_

O_
Od

m
n_
o
E

LL

i

04

-1_ II

©

.r-t

+-_

o

I

©

rio
-r-t

!

(3"

k.n

1



,W

33

r-i

i

i-1

S

ud

_t

_ -I _

ed

,t.

o.

_2

I:0

0

c_

II

v

"r-I

.._

0

r..J

I

.r--I



34

T

J

0

0,1

l
f

1

ti
i

-.q

I

J

I

1

÷

_1_

tD

....

_ L _ •

l

'_ _ 0

I.D

-1--"

d

II

or-_

4 _

0

r_

!

o_

!

_n

Irl1̧



3_

L_

I

0

---- [ ..........

I
!

0
. : c_ --0

" QO

___-_i_ _

-i

I

C) _

\ I

\
A !\,

o _1\
#4

.... {N

F _ Xf

x_J )

\ ;i /
$
\

I i I|I

"6, _"'w
-- I

_1_

O{ i m ___

_( -- _ __

!
li .....

,11

i\ i
!

o

o

-i _

_d

11

_0

ID

L_

0
r_)

I

-M
r_



36

W

i, LIl

22×,o, ' I_ J

I I II I I I I .II II _' _,o,,e_bo_o_

'_LF_ SJ ± _:T:I TT I J ll.l i____] £__
,_RLL t2LX_ I _Lt / /// I M] El H

L_I. 1 I lJ_]_..] _,._t-o.d_e:o.d 1
,_ L L 2t -t i i....... _odeT,

,oLd [1 El [ i i I 1Y_I,_ Kl/ J l li
/ P " 11 ! I I l;-ii l___-.}2Jll [i

t:: :Ll t U
__ I 11 I J 1_I LJ_L_-'_. I±_L_LA

.......l t_L L_XJ_k..........i_ir___:7_,o_!i

"_--t- __I-_7-LT ; i1_ttltl _i
I I_.,t_. /i i I I 1 _ I j

"_ _ L IT2 ]-_LT---JT:- Ll i__L ;l£1-JTT 17{_
--L [ • L L__ Third-mode too4 ! ,7-' [ •

'.3 - i /-1 I i .... lower boundory 7 I] / -]

'II7........t l,.,_]_ -_1 £7 _ {T2L; 7 '. _17 ...
i i i ioo -"_ I

,.o [ l i i_ i I I l_L;-., j__
._ t l-!-!---444 ...... t_.l 4- 1--I- -

I_I__Y-_]7;::-}-773;_TT;TJ.J;;]__;J;]_
___ f I : , i IFirst-_,_d second 7 '

• ,
0 .I .2 3 4 5 .6 .7 B .9 I.O I.I t2

Mech number,M

Figure 8.- Effect of mass ratio on the variations of dynamic pressure

required for flutter and frequency ratio with Mach number.

!
o_

k_

II
I
III

Iii



3?

,-4

k.O
I

8 X 102..... _............
L__c_ !

7---- _._

6 ..... --] .....

........

I

2 i i_J__

--J .......

Theory, third-
mode root,---

-- lower _

....... i.17_LT____
........ S: _-TZ<) E.Ix_ !rirr _nt __

......... d .....

._..'_-: = _ ........... _....

__i ""...... .____4_Theory, first- and second-- __
mode root

-i--]71__--___-_....

W 2

I. I ......

°O ....

,9 ........

,6 0-__

,5 ............

'4, 9 .80

_'_ -- J lower bour y

-71.......:......... _ 1.... :ii

Theory, third-mode root! I I
-LJ

]_1

t--

]__

J_

-- :2_-
L:_:__J_.L_--_2L-_2,E---......]_i-
L__i_.J.___ Theory, ,irst--2;-;econd-L-I --

_ mode roo_f I ]:
.90 1.00 1.10 -- _ 0

Mach number,M

Figure 9.- Comparison of theoretical and experimental flutter boundaries.

NASA- Langley Field, Va, L-615




